
International Journal of Computer Trends and Technology Volume 73 Issue 5, 172-178, May 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I5P122 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Creating Effective Alerts for Monitoring Distributed

Systems
Krishna Vinnakota1, Madhuri Kolla2

1Microsoft, Redmond, USA.

2AT&T, Bothell, USA

1Corresponding Author : aukrishna@gmail.com

Received: 04 April 2025 Revised: 08 May 2025 Accepted: 18 May 2025 Published: 31 May 2025

Abstract - In the complex landscape of modern distributed systems, effective monitoring and alerting are paramount for

maintaining system health, ensuring service reliability, and minimizing downtime.1 This article delves into the critical best

practices for designing and implementing alert systems that provide a high signal-to-noise ratio, enable rapid incident response,

and foster continuous improvement. This article explores key aspects such as metric selection, intelligent alerting logic, the

crucial role of feedback loops, rigorous testing, and strategies for combating alert fatigue, false positives, and false negatives.

By adopting these practices, organizations can transform their alerting infrastructure from a reactive nuisance into a proactive

and intelligent guardian of system stability.

Keywords - Distributed Systems, Monitoring, Alerting, Observability, Site Reliability Engineering (SRE), Alert Fatigue, False

Positives, False Negatives, Metrics, Incident Response, Feedback Loops, Testing in Production.

1. Introduction
The rapid evolution of modern software architectures,

characterized by the widespread adoption of microservices,

cloud-native deployments, and intricate inter-service

dependencies, has dramatically increased the complexity of

maintaining system health. While these distributed systems

offer significant advantages in terms of scalability and

resilience, they simultaneously introduce formidable

challenges for effective monitoring and incident response. A

single-user interaction can now trigger a cascade of operations

across numerous independent services, making it difficult to

pinpoint the root cause of issues using traditional monitoring

paradigms. In this intricate landscape, effective alerting is not

merely a technical necessity but a critical enabler of

operational excellence and business continuity. However, a

pervasive problem in the industry is “alert fatigue,” where an

overwhelming volume of unactionable or redundant alerts

desensitizes on-call engineers, leading to delayed responses or

missed critical incidents. This desensitization represents a

significant research gap in ensuring the reliability and stability

of complex distributed systems. This paper addresses this

crucial challenge by outlining comprehensive best practices

for designing and implementing alert systems that achieve a

high signal-to-noise ratio, facilitate rapid incident resolution,

and foster continuous improvement, transforming alerting

from a reactive burden into a proactive guardian of system

stability.

2. Literature Review
The escalating complexity of modern distributed systems,

driven by the proliferation of microservices and cloud-native

architectures, has underscored the critical importance of

robust monitoring and alerting mechanisms. This section

reviews key contributions in the field that inform the best

practices for designing and implementing effective alert

systems, particularly focusing on achieving a high signal-to-

noise ratio and enabling rapid incident response.

Foundational to effective monitoring is Observability,

which extends beyond mere data collection to enable

understanding of a system’s internal state from its external

outputs. As highlighted by Cindy Sridharan in “Distributed

Systems Observability,” this paradigm emphasizes the

interconnectedness of metrics, logs, and traces as essential

signals for comprehensive system understanding. This

perspective builds upon the principles popularized by

Google’s Site Reliability Engineering (SRE) philosophy,

particularly the “Four Golden Signals” (Latency, Traffic,

Errors, and Saturation), as detailed in the seminal “Site

Reliability Engineering: How Google Runs Production

Systems” by Beyer, Jones, Petoff, and Murphy, and further

elaborated in “Monitoring Distributed Systems” by Rob

Ewaschuk and Betsy Beyer. These works establish the

fundamental metrics to reflect system health and user

experience.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Krishna Vinnakota & Madhuri Kolla / IJCTT, 73(5), 172-178, 2025

173

The literature consistently identifies alert fatigue as a

significant challenge, where an overwhelming volume of non-

actionable or redundant notifications desensitizes on-call

personnel, leading to missed critical incidents. Mike Julian’s

“Practical Monitoring: Effective Strategies for the Real

World” directly addresses this issue, advocating for strategies

that reduce noise and enhance the actionability of alerts. To

combat the limitations of simple static thresholds in dynamic

environments, scholarly discourse, including insights from the

Google SRE Blog, emphasizes adopting intelligent alerting

logic. This includes dynamic thresholds, anomaly detection,

multi-dimensional alerting, and compound alerts that correlate

multiple signals to provide more meaningful insights. The

need for dependency-aware alerting and the careful

categorization of alerts into severity tiers with defined

escalation policies are also recurring themes aimed at

optimizing incident response.

Furthermore, the efficacy of an alerting system is directly

tied to its actionability. The importance of accompanying

every alert with a comprehensive troubleshooting guide or

runbook, providing immediate context, suggested remediation

steps and clear escalation procedures is a widely accepted best

practice. This concept is implicitly supported by the practical

exercises and case studies in “The Site Reliability Workbook:

Practical Ways to Implement SRE” by Beyer et al., which

focuses on applying SRE principles to real-world scenarios,

including effective troubleshooting. The literature also

stresses that alerting is an evolving process requiring

continuous improvement. Post-incident reviews (PIRs), or

post-mortems, are highlighted as crucial feedback

mechanisms to analyze alert effectiveness, identify false

positives and negatives, and refine alerting logic. The concept

of “Testing in Production” and the application of Chaos

Engineering, championed by pioneers like Netflix (often

shared via their Tech Blog), are advanced strategies for

rigorously validating alerts and recovery mechanisms under

real-world stress. Treating alerting configuration as

“infrastructure as code” is also recommended to enable

automated testing and ensure consistency.

Finally, a consistent theme across the reviewed literature

is the imperative to maximize true positives while minimizing

false positives and negatives. This involves careful tuning of

thresholds, leveraging multiple signals, understanding system

behavior, and employing a combination of black-box

(symptom-oriented) and white-box (cause-oriented)

monitoring. While not solely focused on monitoring, the

foundational understanding of distributed systems provided

by works such as “Distributed Systems: Principles and

Paradigms” by Andrew S. Tanenbaum and Maarten Van Steen

underpins the architectural considerations necessary for

designing robust monitoring solutions. More recent

contributions like “Observability Engineering: Achieving

Production Excellence” by Majors, Fong-Jones, and Miranda

further expand on building observable systems with

significant implications for advanced alerting strategies. The

existing literature provides a robust framework for developing

effective alerting systems in distributed environments. It

emphasizes a shift from reactive, threshold-based alerting to

proactive, intelligent, and continuously refined approaches

grounded in comprehensive observability and a deep

understanding of system behavior and operational challenges

like alert fatigue.

3. The Foundation: Meaningful Metrics and

Observability
Before alerts can be effective, the underlying monitoring

infrastructure must capture the correct data. This means

focusing on meaningful metrics that truly reflect the health

and performance of the distributed system. The “Four Golden

Signals” of monitoring, popularized by Google’s Site

Reliability Engineering (SRE) philosophy, provide an

excellent starting point:

3.1. Latency

The time it takes to serve a request. This can be broken

down into average, median, and various percentiles (e.g., p90,

p99, p99.9) to understand user experience and identify tail

latencies that might not be visible in averages.

3.2. Traffic

A measure of how much demand is being placed on your

system. For a web service, this might be HTTP requests per

second; for a database, it could be queries per second.

3.3. Errors

The rate of requests that fail, either explicitly (e.g., HTTP

5xx responses) or implicitly (e.g., incorrect data).

3.4. Saturation

How “full” your service is. This can be considered a

measure of resource utilization (CPU, memory, disk I/O,

network bandwidth, queue depth) that indicates approaching

limits.

Beyond these golden signals, it is crucial to identify

business-critical metrics that directly impact user experience

and business outcomes. These might include conversion rates,

successful transactions, or key feature usage.

3.5. Observability

Observability goes beyond just monitoring. It is about

understanding a system’s internal state merely by examining

its external outputs. This involves not just metrics but also:

3.6. Logs

Detailed records of events occurring within the system.

Log aggregation and analysis tools (e.g., ELK stack, Splunk)

are essential for contextualizing alerts and debugging.

Krishna Vinnakota & Madhuri Kolla / IJCTT, 73(5), 172-178, 2025

174

3.7. Traces

Distributed tracing allows to follow a single request as it

propagates through multiple services in a distributed system,

providing a holistic view of its journey and identifying

bottlenecks or failures across service boundaries (e.g.,

OpenTelemetry, Jaeger, Zipkin).

These three pillars – metrics, logs, and traces – provide

the rich context for effective alerting and rapid

troubleshooting.

4. Implementing Intelligent Alerting Logic
Simple static thresholds often fall short in dynamically

distributed environments, leading to excessive noise or missed

critical events. Intelligent alerting logic is key to building an

effective system.

4.1. Dynamic Thresholds and Anomaly Detection

Instead of fixed values, leverage historical data and

machine learning to establish dynamic thresholds that adapt to

changing system behavior. Anomaly detection algorithms can

identify deviations from standard patterns, even subtle ones,

that might precede a major outage. This is particularly useful

for detecting “slow burns” – gradual degradations that static

thresholds might miss.

4.2. Multi-Dimensional Alerting

Consider not just the raw value of a metric but also its rate

of change, its trend over time, and its behavior across different

dimensions (e.g., per region, per service, per deployment). An

alert on a sudden increase in error rate for a specific

microservice after a new deployment is far more actionable

than a generic increase in overall error rates.

4.3. Compound Alerts and Correlation

Individual alerts can be misleading. Implement logic that

combines multiple related signals to trigger a single, more

meaningful alert. For example, a spike in CPU utilization

might be usual during a traffic surge, but a high CPU coupled

with increased latency and error rates for the same service

indicates a genuine problem. Event correlation techniques

group related alerts, reduce noise and highlight the underlying

root cause.

4.4. Baselines and Seasonality

Distributed systems often exhibit predictable patterns,

such as daily or weekly traffic cycles. Alerts should account

for these baselines and seasonal variations to avoid false

positives during regular high-load periods or false negatives

during expected low-load periods.

4.5. Severity Tiers and Escalation Policies

Not all alerts are created equal. Categorize alerts based on

severity (e.g., critical, major, minor, warning) and define clear

escalation paths. Critical alerts might trigger immediate on-

call pages, while warnings could be routed to a dashboard or

a less intrusive notification channel for later review. This helps

prioritize incident response and manage on-call fatigue.

4.6. Dependency-Aware Alerting

Understand the dependencies between services. If a

downstream service is failing, it is often more helpful to alert

on the root cause rather than having every upstream service

generate an alert for its inability to connect. This requires

robust service discovery and dependency mapping.

5. Troubleshooting Guides and Actionable

Alerts
An alert is only as good as its actionability. When an alert

fires, the on-call engineer should immediately understand:

• What is broken? (Symptom)

• Why is it broken? (Likely cause, if discernible from the

alert context)

• What immediate action should be taken? (Runbook)

• Who is responsible? (Owner, team, on-call rotation)

To achieve this, every alert should be accompanied by a

troubleshooting guide or runbook. This guide should:

• Provide context: Link to relevant dashboards (e.g.,

Grafana), logs (e.g., Kibana), and tracing information

(e.g., Jaeger) to help the engineer quickly drill down into

the problem.

• Suggest immediate remediation steps: These might

include restarting a service, scaling up resources, or

rolling back a recent deployment.

• Outline escalation procedures: If the immediate steps do

not resolve the issue, who else needs to be involved?

• Include contact Information: For the responsible team or

service owner.

• Be kept up-to-date: Outdated runbooks are worse than no

runbooks. Regularly review and update them.

Automated self-healing mechanisms should also be

considered for non-critical, well-understood issues, reducing

the need for human intervention. If an alert requires a “robotic

response,” it might be a candidate for automation.

6. Establishing Feedback Loops for Continuous

Improvement
Alerting is not a static configuration; it is an evolving

process. Continuous improvement is essential to combat alert

fatigue and ensure alerts remain relevant.16

6.1. Post-Incident Reviews (PIRs) / Post-Mortems

Every incident, whether triggered by an alert or not,

should undergo a blameless post-mortem. A key outcome of

these reviews should be an analysis of the alerting system:

• Did the alert fire effectively? Was it timely?

• Was it actionable?

• Could the alert have been more precise or context-rich?

Krishna Vinnakota & Madhuri Kolla / IJCTT, 73(5), 172-178, 2025

175

• Was it a false positive or a false negative?

• Could a different alert have prevented this incident?

6.2. Alert Review Sessions

Schedule regular sessions (e.g., quarterly) with on-call

teams to review existing alerts. Discuss alerts that fired

frequently, those that were ignored, and any “silent failures”

that occurred without an alert.

6.3. Solicit On-Call Feedback

Empower on-call engineers to provide immediate

feedback on alerts. This could be through a simple mechanism

like an emoji reaction in a chat tool (“ helpful,” “ noisy,”

“ false positive”) or a dedicated feedback form.

6.4. A/B Testing Alerts (Controlled Rollouts)

Consider A/B testing them in a controlled environment or

with a subset of traffic before full rollout for new or

significantly modified alerts. This can help identify

unintended consequences or excessive noise.

6.5. Measure Alert Effectiveness

Track metrics related to alerting:

• Mean Time To Detect (MTTD)

• Mean Time To Resolve (MTTR)

• Number of alerts per on-call shift/engineer

• Percentage of false positives/negatives

• Time spent on alert investigation

• Time spent muting/disabling alerts

This data provides empirical evidence for the

effectiveness of your alerting system and guides improvement

efforts.

7. Testing the Alerts Before Making Them Live
Deploying alerts without proper testing is akin to

deploying code without unit tests –an invitation for disaster.

Alerts must be tested rigorously to ensure they function as

expected and do not create unintended side effects.

7.1. Synthetic Monitoring and Fault Injection

Use synthetic transactions or scripts to simulate user

behavior and deliberately introduce failures or performance

degradations into a test or staging environment. Verify that the

relevant alerts fire correctly and with the expected severity.

7.2. Chaos Engineering

For mature organizations, chaos engineering can be

invaluable. Intentionally injecting failures into a production

environment (in a controlled manner) can reveal unforeseen

dependencies and validate that alerts and recovery

mechanisms work under real-world stress.

7.3. Dry Runs and Drills

Conduct “game days” or “fire drills” where on-call teams

simulate responding to specific alert scenarios. This not only

tests the alerts themselves but also the incident response

procedures and team readiness.

7.4. Infrastructure as Code for Alerts

Treat your alerting configuration as code, version control

it, and integrate it into your CI/CD pipeline.21 This enables

automated testing of alert definitions and ensures consistency

across environments.

7.5. Test Environment Validation

While production is the ultimate test, thoroughly test

alerts in staging or pre-production environments that closely

mimic production. This catches many issues before they

impact live systems.

8. Alert Fatigue, Cost of False Alerting, and

Reducing Noise
Alert fatigue is a significant problem, leading to burnout,

missed critical alerts, and decreased team morale. It directly

contributes to the cost of false alerting, which includes:

8.1. Lost Productivity

Engineers waste time investigating non-issues.

8.2. Opportunity Cost

Time spent on false alerts is not spent on proactive

development, feature work, or addressing real technical debt.

8.3. Increased MTTR
Real alerts may be delayed or ignored due to

desensitization.

8.4. Team Morale and Burnout

Constant interruptions and perceived futility of effort

lead to disengagement.

Strategies to reduce noise and combat alert fatigue:

Focus on Symptoms, Not Causes

Alert on user-visible symptoms (e.g., “login latency is

high,” “checkout errors are spiking”) rather than internal

causes (e.g., “CPU utilization is 90%”).

While causes are important for debugging, symptoms

impact users and warrant immediate attention.

Tune Thresholds Carefully

Avoid overly sensitive thresholds that trigger minor

fluctuations. Use percentiles (e.g., p95, p99 latency) rather

than averages to capture the experience of most users,

especially the outliers.

Batch and Aggregate Alerts

Instead of individual alerts for every instance of a

problem, aggregate similar issues into a single, comprehensive

notification. For example, rather than 100 individual “disk

Krishna Vinnakota & Madhuri Kolla / IJCTT, 73(5), 172-178, 2025

176

full” alerts for different nodes, send one alert indicating “N

nodes have low disk space in cluster X.”

Use Maintenance Windows

Suppress alerts for planned maintenance or deployments.

Debounce Alerts

Implement a delay or a minimum number of occurrences

before an alert fires. This prevents flapping alerts caused by

transient network issues or brief spikes.

Mute Non-Actionable Alerts

If an alert consistently fires but requires no immediate

action, re-evaluate its necessity. Can it be downgraded to a

warning, sent to a dashboard, or eliminated?

Contextual Alerting

Enrich alerts with relevant metadata (e.g., service name,

environment, deployment version, recent changes) to provide

immediate context, reducing the need for engineers to search

for information.

9. Avoiding False Positives and False Negatives
The goal is to maximize true positives (correctly

identifying real issues) while minimizing false positives

(alerting on non-issues) and false negatives (failing to alert on

real issues).

9.1. Avoiding False Positives

9.1.1. Refine Thresholds

As discussed, use dynamic thresholds, percentiles, and

baselines.

9.1.2. Leverage Multiple Signals

Multiple conditions must be met before firing a critical

alert.

9.1.3. Filter Test Traffic and Synthetic Data

Ensure your monitoring system excludes data generated

by tests or synthetic monitors that do not reflect real user

activity.

9.1.4. Understand System Behavior

Deep knowledge of your system’s behaviour under

various loads and conditions is critical for setting appropriate

thresholds.

9.1.5. Continuous Feedback and Tuning

Regularly review false positives identified in post-

mortems and alert review sessions to refine alerting logic.

9.2. Avoiding False Negatives

9.2.1. Comprehensive Metric Coverage

Monitor all critical components and user flows.

9.2.2. Monitor Service-Level Objectives (SLOs) and Service-

Level Indicators (SLIs)

Define clear SLOs for critical services and monitor their

SLIs (e.g., availability, latency, error rate). Alert when SLIs

breach thresholds that put SLOs at risk. This ensures that

monitoring is aligned with business value.

9.2.3. Black-Box vs. White-Box Monitoring

Black-Box (External/Symptom-Oriented)

Monitors from an external perspective, mimicking a

user’s experience (e.g., synthetic transactions, ping checks).

Crucial for detecting active user-visible problems.

White-Box (Internal/Cause-Oriented)

Monitors the system’s internal state through metrics, logs,

and traces. It is essential for debugging and identifying

potential issues before they impact users.

Combining both is ideal for catching current outages and

impending problems.

Proactive Monitoring

Use predictive analytics to anticipate failures before they

occur (e.g., disk capacity trends, anomaly detection on

resource utilization).

Monitor Dependencies

Ensure that you are aware of a critical dependency

failure.

Regularly Review Gaps

Periodically analyze incident history to identify any

“silent failures” that occurred without an alert. This points to

gaps in your monitoring.

10. Sampling Types in Distributed System

Monitoring
In large-scale distributed systems, collecting and

processing every single data point can be cost-prohibitive and

computationally intensive. Sampling becomes a necessary

technique to manage data volume while retaining valuable

insights.

10.1. Metrics Sampling

Rate-based Sampling

Collecting metrics at a predefined frequency (e.g., every

10 seconds).

Statistical Sampling

Collecting a random subset of data points.

Aggregated Metrics

Instead of storing raw data points, aggregate them over

time (e.g., 1-minute averages, 5-minute sums).

Krishna Vinnakota & Madhuri Kolla / IJCTT, 73(5), 172-178, 2025

177

10.2. Trace Sampling

Head-based Sampling

The decision to sample a trace is made at the beginning of

the request’s journey (the root span). This is simpler to

implement and ensures complete traces for the sampled

requests. However, it might miss interesting or problematic

traces if the sampling rate is too low.

Tail-based Sampling

The decision to sample is made at the end of the trace after

all spans have been collected. This allows for intelligent

sampling based on trace characteristics (e.g., always sample

traces with errors, high latency, or specific attributes). While

more complex to implement (requires temporary storage of all

spans), it ensures that “interesting” traces are captured.

Error-based Sampling

A specialized form of tail-based sampling prioritizes

traces containing errors.

Adaptive Sampling

Dynamically adjusts the sampling rate based on traffic

volume or other system conditions.

The choice of sampling strategy depends on the specific

monitoring goals, budget, and the tolerance for data loss. A

combination of sampling techniques is often employed for

critical production systems, possibly with lower sampling

rates for high-volume, healthy traffic and higher rates for

errors or critical paths.

11. Other Crucial Topics
11.1. Alert Routing and On-Call Management

Efficiently route alerts to the right team or individual

based on severity, service ownership, and time of day. With

escalation policies, utilize on-call scheduling tools (e.g.,

PagerDuty, Opsgenie).

11.2. Runbook Automation

Automate common remediation steps for known issues to

reduce manual intervention and MTTR.

11.3. Cross-Team Collaboration

Foster a culture of shared responsibility for monitoring

and alerting. Developers should be involved in defining

metrics and alerts for their services.

11.4. Documentation and Knowledge Sharing

Maintain comprehensive documentation of your

monitoring system, alert definitions, runbooks, and incident

history.

11.5. Security Alerts

While this article focuses on operational alerts, a robust

security alerting system is equally critical for detecting and

responding to threats.

11.6. Cost Optimization of Monitoring

Monitoring and alerting can become expensive at scale.

Regularly review data retention policies, sampling strategies,

and tool usage to optimize costs without sacrificing visibility.=

11.7. Tooling and Ecosystem

Select monitoring, logging, and tracing tools that

integrate well and support the chosen best practices (e.g.,

Prometheus, Grafana, Datadog, New Relic, Splunk, ELK

stack, OpenTelemetry). The right tools can significantly

facilitate the implementation of these practices.

11.8. Shift-Left Monitoring

Encourage developers to consider monitoring and alerting

during new services’ design and development phases rather

than being an afterthought. This helps embed observability

from the ground up.

12. Conclusion
Creating effective alerts for monitoring distributed

systems is a continuous journey, not a destination. It requires

a strategic approach that moves beyond simple thresholding to

embrace intelligent logic, actionable insights, and a culture of

constant improvement.

By focusing on meaningful metrics, establishing robust

feedback loops, rigorously testing alerts, and actively

combating alert fatigue, organizations can build an alerting

system that empowers their operations teams, safeguards

service reliability, and ultimately contributes to business

success in the complex world of distributed computing.

The investment in well-designed and maintained alerting

systems is a critical component of any resilient and high-

performing distributed system.

References
[1] Rob Ewaschuk and Betsy Beyer, Monitoring Distributed Systems, Google SRE Book, 2016. [Google Scholar] [Publisher Link]

[2] James Turnbull, The Art of Monitoring, 2014. [Google Scholar] [Publisher Linkx]

[3] Cindy Sridharan, “Distributed Systems Observability,” 2018. [Google Scholar]

[4] Niall Richard Murphy, Chris Jones, and Jennifer Petoff, Site Reliability Engineering: How Google Runs Production Systems, 2016.

[Google Scholar] [Publisher Link]

[5] Betsy Beyer et al., The Site Reliability Workbook: Practical Ways to Implement SRE, O'Reilly Media, pp. 1-512, 2018. [Google Scholar]

[Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rob+Ewaschuk+and+Betsy+Beyer%2C+Monitoring+Distributed+Systems&btnG=
https://sre.google/sre-book/monitoring-distributed-systems/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=James+Turnbull%2C+The+Art+of+Monitoring&btnG=
https://www.google.co.in/books/edition/The_Art_of_Monitoring/w5QfDAAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cindy+Sridharan%2C+%E2%80%9CDistributed+Systems+Observability&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Site+Reliability+Engineering%3A+How+Google+Runs+Production+Systems&btnG=
https://www.google.co.in/books/edition/Site_Reliability_Engineering/_4rPCwAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Site+Reliability+Workbook%3A+Practical+Ways+to+Implement+SRE&btnG=
https://www.google.co.in/books/edition/The_Site_Reliability_Workbook/fElmDwAAQBAJ?hl=en&gbpv=0

Krishna Vinnakota & Madhuri Kolla / IJCTT, 73(5), 172-178, 2025

178

[6] Andrew S. Tanenbaum and Maarten Van Steen, Distributed Systems: Principles and Paradigms, 2002.

[7] Mike Julian, Practical Monitoring: Effective Strategies for the Real World, 2017. [Google Scholar] [Publisher Link]

[8] Charity Majors, Liz Fong-Jones, and George Miranda, Observability Engineering: Achieving Production Excellence, 2022. [Google

Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Practical+Monitoring%3A+Effective+Strategies+for+the+Real+World&btnG=
https://www.google.co.in/books/edition/Practical_Monitoring/Mak7DwAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Observability+Engineering%3A+Achieving+Production+Excellence&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Observability+Engineering%3A+Achieving+Production+Excellence&btnG=
https://www.google.co.in/books/edition/Observability_Engineering/KGZuEAAAQBAJ?hl=en&gbpv=0

